

 Designing Modules In Python - HashedIn Technologies

Table of Contents

Introduction 3
Who is this book for? 4
How to use this book 4

Chapter 1: Designing Interface for SMS Client 5
Step 1: Decide what’s relevant to client developers 5
Step 2: Define the Interface 6
Step 3: Invoke our class from client code 8
Summary 10

Chapter 2: Implementing SmsClient 11
Step 1: Writing login method 11
Step 2: Write code to make HTTP Requests 12
Step 3: Handling HTTP Status Codes 13
Step 4: Handling network exceptions 15
Summary 16

Chapter 3: Adding Retry Logic 17
Don't modify code that's already working 17
Using Inheritance 18
When should we retry? 19
Adding Retry Loop with Exponential Backoff 19
Using a Retry Decorator 20
Summary 21

Chapter 4: Integrating with a Second SMS Gateway 22
Create an implementation for Milio 22
Implementing retries without code duplication 23
Splitting Traffic between Milio and Watertel 25
Combining Retries and SmsRouter 28
Summary 29

Appendix A: Watertel Integration Guide 30
Login API 30
Send SMS API 30

Appendix B: Milio Integration Guide 32

Page 2 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Introduction
At HashedIn, we run a training program for junior developers to get better
at design. During one of these programs, we asked developers to design a
module to send sms. We also asked them to call the sms module from 3
different client applications. They had 30 minutes to complete this activity.

Then, after 30 minutes, we revealed a new set of requirements.
Additionally, we set 2 hard rules for them to implement these
requirements:

1. Developers were not allowed to change the way client applications
invoked their sms module

2. Developers were not allowed to modify existing code. Instead, they
had to write new code to address the additional requirements,
without duplicating code.

20 minutes later, we again introduced a new set of requirements. By this
time, most solutions broke down and failed to meet objectives in one way
or other.

By gradually introducing additional requirements, and by forcing a set of
constraints - developers were able to appreciate the need for a good
design. They developed a mental model for discerning good design from
bad.

We got the opportunity to review designs from 30+ developers, and learnt
how developers think when asked to solve a problem. Eventually, we
wrote a series of blogs with the ideal solution. The blogs tried to explain
the thought process used to arrive at the solution, rather than simply
presenting the solution.

This ebook is a more refined version of these blog posts. This is a part of
our training material for HashedIn University, our developer bootcamp.

Page 3 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Who is this book for?
This book is for people who can program in an object oriented
programming language. This book uses python to introduce various
design patterns, but knowledge of python is not a must.

How to use this book
To make the most of this book, read the requirements at the start of each
chapter, and then write down your solution. Then read through the rest of
the chapter and critique your solution.

Good design is obvious once presented. But arriving at that solution is
difficult, especially if you are new to programming. Writing down your
solution is the only way to realize the shortcomings of your design. If you
read the chapter without writing, you will tell yourself “That was obvious. I
would have solved it in a similar manner”

Page 4 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Chapter 1: Designing Interface for SMS Client
Assume that you are the tech lead for Blipkart, an early stage ecommerce
portal. Blipkart needs to send SMS (aka Text Messages) to customers at
various stages:

● On checkout after payment is successful
● On failed checkout
● On successful delivery of products to consumer.

Since several business functionalities need to send SMS, you have been
asked to design a reusable module. This module or function will be used
by other developers (aka clients or client developers). You have to make it
easy for them to send messages.

Blipkart has tied up with Watertel to send text messages. Watertel
provides a HTTP POST based API to first login and then to send sms.
Appendix A has details on the integration with Watertel.

For this exercise, you don’t have to write complete code, pseudo code is
sufficient. Concentrate on function signatures / class names, and think
how client developers will use your module.

Also write the client code in orders.py and logistics.py to invoke the class
or function that you have developed.

Tip Before reading further, write down your solution on a piece of
paper!

Step 1: Decide what’s relevant to client developers
Your module sits between client developers on one side, and the API
provided by Watertel on the other side. The module’s job is to simplify
sending an SMS, and to ensure that changes in Watertel do not affect your
client developers.

A common way to simplify interaction with a third party service is to hide
pieces of information that are not relevant to client developers.

Page 5 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Watertel’s API exposes the following - username, password, access_token,
expiry, phone number, message and priority. Our first job is to find out
which of these concepts client developers care about.

Client developers don’t care about username and password. They don’t
want to worry about expiry either. These are things our module should
handle. They only care about phone number and message – “Take this
message, and send it to this phone number”.

Client developers only care about phone number
and message – “take this message, and send it to
this phone number”.

Except phone number and message, all other parameters are
implementation details. It is our module’s responsibility to hide them from
our clients.

Step 2: Define the Interface
Since developers only care about phone_number and message, our
interface is very clear:

sms.py - with just a single function

Client developers will call this function

when they want to send a SMS

def send_sms (phone_number, message):
 pass

Now, let’s look at it from our perspective - what else do we need to send
the sms? We need the url, the username and password. We also need to
manage the access token and handle its expiry. How will we get this data?

A naive approach is to read it from django settings, like this:

sms.py - Reading directly from settings [WRONG]

Client developers will call this function

when they want to send a SMS

Page 6 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

def send_sms (phone_number, message):
 url = settings .sms_url
 username = settings .sms_username
 password = settings .sms_password

 # TODO: Now that we have everything, call Watertel's API
 # and send the SMS

This naive approach though has a major problem - it restricts you to
exactly one configuration. Why would you want multiple configurations
though?

Perhaps you want to unit test your code without actually connecting to
Watertel. Or perhaps you have multiple accounts with Watertel, each with
different usage limits. Or perhaps different modules want to send SMS
using a different phone number.

When you read directly from settings, you are unnecessarily limiting your
design.

In general, if your class needs some data, ask for it in your constructor.
Make it somebody else’s problem to pass you that information. It’s not
your job to look for that information.

I want this piece of information to do my job. I
don’t care how you get it, but I need it before I
can do anything.

Tip This principle of asking what you want via your constructor is
called Dependency Injection. Read this Stack Overflow question to
learn more about the pattern.

Based on the above discussion, we first create a class - SmsClient. Then,
we declare url, username and password as constructor arguments. It now
becomes someone else’s responsibility how these parameters are
provided. We just assume we have these parameters and do our job of
sending SMS.

Page 7 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

http://stackoverflow.com/questions/130794/what-is-dependency-injection

 Designing Modules In Python - HashedIn Technologies

sms.py - creating a SmsClient class

class SmsClient (object):
 def __init__ (self, url, username , password):

self .url = url
self .username = username
self .password = password

 # Client developers will call this function
 # when they want to send a SMS
 def send_sms (phone_number, message):

TODO - write code to send sms
pass

Step 3: Invoke our class from client code
Next, in order to use our module, our clients need an object of SmsClient.
To create an object though, they will need to provide url, username and
password. Our first attempt could be something like this:

orders.py: Attempt #1 - using SmsClient class

In orders.py

from django.conf import settings
from sms import SmsClient

Create an object once

sms_client = SmsClient (settings .sms_url, settings .sms_username,
settings.sms_password)

When ready, call the send_sms method

sms_client .send_sms (phone_number, message)

There are few problems with our first attempt:
1. First, orders.py shouldn’t care how SmsClient objects are

constructed. If we later need additional parameters in the
constructor, we would have to change orders.py, and all classes
that use SmsClient.

2. If we later decide to read our settings from some other place - say
environment variables - then orders.py would have to be modified

Page 8 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

3. We have to create SmsClient objects in every module that wants to
send a SMS, which is way too much duplication

The solution is to create SmsClient object in sms.py module. Then
orders.py and logistics.py can directly import the object from sms module.

Here is how it looks:

sms.py

from django.conf import settings

class SmsClient (object):
 def __init__ (self, url, username , password):

self .url = url
self .username = username
self .password = password

 def send_sms (phone_number, message):
TODO - write code to send sms
pass

sms_client = SmsClient (settings .sms_url, settings .sms_username,
settings.sms_password)

orders.py:

from sms import sms_client
...

when you need to send an sms

sms_client .send_sms (phone_number, message)

Tip In this exercise, we are building a reusable module as part of a
larger application. Therefore, it is okay for sms.py to construct
the object and make sms_client available to other modules.

However, if we were to make a truly reusable module that would
installed via pip – then we shouldn’t be constructing the object

Page 9 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

within sms.py. It’d be the client’s responsibility to construct the
object.

Summary
Before you start implementing, think how your clients will use your
module. It’s a good idea to actually write down the client code (i.e. code in
orders.py and logistics.py) before you start implementing your module.

Page 10 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Chapter 2: Implementing SmsClient
Earlier, we wrote a stub for our SmsClient class. In this chapter, we will
build the logic to connect with Watertel.

If you read Watertel’s developer documentation [see Appendix A], the
steps to send an SMS are:

1. Login by making a post request to url, and pass a valid username
and password.

2. If successful, you get back an access_token and an expiry
timestamp. Store this access_token for future use.

3. When you want to send a SMS, make a post request that includes
the access_token, the phone number and the message.

Step 1: Writing login method
We start by writing a _login method that stores the access token and it’s
expiry in member variables.

sms.py

class SmsClient (object):
 def __init__ (self, url, username , password):

self .url = url
self .username = username
self .password = password
self .access_token = None
self .expires_at = 0

 def _login(self):
TODO - Make HTTPS request, get accessToken and expiresAt
TODO - error handling, check status codes
self .access_token = response ["accessToken"]
self .expires_at = get_current_time () + response["expiry"]

Notice that we prefix the function with an underscore. This denotes that
the method is private. You don’t want client developers to think about
login, and hence we make the login method private.

Page 11 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Someone needs to call _login. Obviously, the clients shouldn’t call _login
directly. The next obvious choice is calling the _login method from our
constructor. However, constructors must not do real work. If we make
network calls in the constructor, it makes the object difficult to test, and
difficult to reuse.

This leaves us with only one choice - call _login from the send_sms
method. Here’s how it looks in practice:

Calling _login before sending sms if access token has expired

class SmsClient (object):
 def _login(self):

TODO - Make HTTPS request, get accessToken and expiresAt
TODO - error handling, check status codes
self .access_token = response ["accessToken"]
self .expires_at = get_current_time () + response["expiry"]

 def _get_access_token (self):
if (get_current_time() > self .expires_at):

self ._login()
return self.access_token

 def send_sms (self, phone_number, message):
access_token = self. _get_access_token()
TODO: use the access_token to actually send the SMS

Step 2: Write code to make HTTP Requests
At this point we can start writing code to send the SMS. We will assume a
make_request function that returns the parsed JSON object and the http
status code.

class SmsClient (object):
 def send_sms (self, phone_number, message):

access_token = self. _get_access_token()
status_code, response = self._make_http_request(

access_token, phone_number, message)

Page 12 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

 def _make_request(self, access_token, phone_number, message):
TODO - use requests library to make a POST request
return status_code , response

Step 3: Handling HTTP Status Codes
What should we do with the status_code? One option is to return the
status_code and let our clients handle it. That’s a bad idea though.

We don’t want our clients to know how we are sending the SMS. This is
important – if the clients know how you send the sms, you cannot change
how your module works in the future. When we return the HTTP status
code, we are telling them indirectly how our module works. This is a leaky
abstraction, and you want to avoid it as much as possible (though you
can’t eliminate it completely).

We can’t return the status code, but we still want our clients to do some
error handling. Since our clients are calling a python method, they expect
to receive errors the pythonic way – which is Python Exceptions.

When it comes to error handling, you need to be clear whose problem it is.
It’s either the client developers fault, or your modules fault. A problem
with your module’s dependency (i.e. Watertel server down) is also your
module’s fault – because the client developer doesn’t know Watertel even
exists.

We will create an exception class for each possible error –

● BadInputError – a base error for incorrect inputs
● InvalidPhoneNumberError – when the phone number is malformed

or wrong
● InvalidMessageError – when the message is longer than 140

characters
● SmsException – when it is our modules fault and we cannot send

the sms. This tells our clients that calling send_sms again is safe and
may work.

Page 13 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

With this, here is how our code looks like:

Updated sms.py with error handling

def _validate_phone_number(self, phone_number):
 if not phone_number:

raise InvalidPhoneNumberError("Empty phone number")
 phone_number = phone_number.strip()
 if (len(phone_number) > 10):

raise InvalidPhoneNumberError("Phone number too long")
 # TODO add more such checks

def _validate_message (self, message):
 if not message:

raise InvalidMessageError("Empty message")
 if (len(message) > 140):

raise InvalidMessageError("Message too long")

def send_sms (self, phone_number, message):
 self ._validate_phone_number(phone_number)
 self ._validate_message (message)

 access_token = self._get_access_token ()
 status_code, response = _make_http_request(access_token,
phone_number , message)

 if (status_code == 400):
This is Watertel telling us the input is incorrect
If it is possible, we should read the error message
and try to convert it to a proper error
We will just raise the generic BadInputError
raise BadInputError(response .error_message)

 elif (status_code in (300, 301, 302, 401, 403)):
These status codes indicate something is wrong
with our module's logic. Retrying won't help,
we will keep getting the same status code
3xx is a redirect, indicate a wrong url
401, 403 have got to do with the access_token being

wrong

We don't want our clients to retry, so we raise
RuntimeError

Page 14 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

raise RuntimeError(response .error_message)

elif (status_code > 500):
This is a problem with Watertel
This is beyond our control, and perhaps retrying would

help

We indicate this by raising SmsException
raise SmsException(response .error_message)

Step 4: Handling network exceptions
There’s one more thing that is missing – handling any exceptions that are
raised by _make_request function call. Assuming you are using the
wonderful requests library, this is the list of exceptions that can be
thrown.

You can categorize these exceptions into two categories – safe to retry v/s
not safe to retry.

● Safe to retry? Wrap the exception in a SMSException and raise it.
● Not safe to retry? Just let the exception propagate.

In our case, ConnectTimeout is safe to retry. ReadTimeout indicates the
request made it to the server, but the server did not respond timely. In
such cases, you can’t be sure if the SMS was sent or not. If it is critical the
SMS be sent, you should retry. If your end users would be annoyed
receiving multiple SMSes, then do not retry.

You can handle these exceptions inside the _make_request method.

sms.py : handling exceptions raised by requests library

def _make_http_request (access_token, phone_number, message):
 try:

data = {"message" : message , "phone" : phone_number,
"priority" : self.priority}

url = "%s?accessToken=%s" % (self.url , access_token)
r = requests .post(url , json=data)
return (r.status_code, r.json())

 except ConnectTimeout:

Page 15 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

raise SmsException("Connection timeout trying to send
SMS")

That covers most of the implementation of our module. We won’t get into
the code that actually makes the HTTP request – you can use the requests
library for that.

Summary
1. Don’t leak inner workings of your module to your clients, otherwise

you can never refactor or change your implementation.
2. Raise appropriate errors to inform your clients what went wrong.

Page 16 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/

 Designing Modules In Python - HashedIn Technologies

Chapter 3: Adding Retry Logic
In previous chapters, we designed the interface for our SmsClient, then
implemented the interface, and then wrote unit tests for the
implementation.

The code has made it to production. About 50 different modules in the
code are using our SMS module to send text messages.

We now have a feature request from the product managers:

Customers are complaining they don’t receive SMS’es at times.
Watertel recommends resending the SMS if the status code is
5xx. Extend the sms module to support retries with exponential
backoff. The first retry should be immediate, the next retry
within 2s, and the third within 4s. If it continues to fail, give up
and don’t try further.

Of course, our product manager assumed we would take care of a few
things, viz

1. We will implement this in all the 50 modules that are sending
sms’es.

2. There would be no regression bugs due to this change.

Don't modify code that's already working
Let’s start planning our change. There are two seemingly opposing views
here -

1. We don’t want client developers to change their code, not even a
single character.

2. At the same time, the SmsClient class we wrote earlier works great –
and we don’t want to change code that is already working.

Tip The open/closed principle tells us we shouldn’t modify existing
source code just to add new functionality. Instead, we should find
ways to extend it without modifying the source code.

Page 17 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

https://en.wikipedia.org/wiki/Open/closed_principle

 Designing Modules In Python - HashedIn Technologies

In our case, this means we shouldn’t touch the source code for
SmsClient just to add new features.

Using Inheritance
This is tricky situation, but as with everything else in software, this
problem can be solved with a little bit of indirection. We need something
sitting in between our clients and our SmsClient class. That something can
be a derived class of SmsClient.

sms.py : Using inheritance to implement new requirements

This is the class we wrote earlier

We are not allowed to change this class

class SmsClient (object):
 def send_sms (self, phone_number, message):

...

class SmsClientWithRetry (SmsClient):
 def __init__ (self, url, username , password):

super(SmsClient , self).__init__ (url , username , password)

 def send_sms (self, phone_number, message):
TODO: Insert retry logic here
super(SmsClientWithRetry , self).send_sms (phone_number,

message)

TODO: Insert retry logic here

Earlier, client was an instance of SmsClient, like this

client = SmsClient(username, password)

We now change it to be an instance of SmsClientWithRetry

As a result, our client developers doesn't have to change

They are simply importing sms_client from sms.py

sms_client = SmsClientWithRetry(username , password)

If you notice, using inheritance, we got ourselves a way to add retry logic
without modifying the existing code that is already known to work.

Page 18 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

 Designing Modules In Python - HashedIn Technologies

Tip In general, we should prefer composition over inheritance. In the
next post, we will see the limitations of inheritance and why
composition is better.

When should we retry?
With that done, we can now work on adding the retry logic. We don’t want
to retry our client gave us an invalid phone number or a bad message –
because it is a waste of resources. Even if we retried 100 times, it won’t
succeed. We also don’t want to retry if there is a logic problem in our
module’s code – because our code cannot fix itself magically, and retry is
unlikely to help.

In other words, we only want to retry if Watertel has a problem and we
believe retrying may end up delivering the message.

If you revisit our original SmsClient implementation, you will now
appreciate the way we designed our exceptions. We only want to retry
when we get an SmsException. All other exception types, we simply let the
client developers deal with it.

Adding Retry Loop with Exponential Backoff
Whenever you retry calling an external system, you should add in some
delay between requests. There is no point trying immediately after a
request failed - you are likely to get back the same error.

There are two common strategies - a random delay, and exponential
backoff. Exponential backoff increases the delay between attempts in an
exponential manner - 2s, 4s, 8s, 16s and so on.

SmsClient with exponential backoff

class SmsClientWithRetry (SmsClient):
 def __init__ (self, url, username , password):

super(SmsClientWithRetry , self).__init__(
url, username , password)

TODO: Parameterize num_attempts and backoff
self .num_attempts = 3
self .backoff = 2

Page 19 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

 def send_sms (self, phone_number, message):
attempts = 1
retries = self.num_attempts
delay = self.backoff
while retries > 1:

try:
return super(SmsClientWithRetry , self).send_sms(

phone_number, message)
except SmsException as e:

print("Attempt #%s to send SMS failed. Retrying in
%s seconds" % (attempts , delay))

time.sleep(delay)
attempts += 1
retries -= 1
delay *= self.backoff

Last attempt to send the sms
If this still fails, we want SmsException to be raised
return super(SmsClientWithRetry , self).send_sms(

phone_number, message)

Using a Retry Decorator
Retrying with exponential backoff is a very common approach when
integrating with external systems. It doesn’t make sense to write that logic
every time - write it once, and reuse it.

The easiest way to handle retries in a generic manner is via a decorator.

Tip Decorator is a design pattern that lets you add logic before and
after a function is called. In our case, we want to call the
send_sms function, and we want to add retry logic before and
after send_sms function call.

We will not write the decorator function ourselves. There are several
versions available online that solve this problem:

1. See SaltyCrane’s implementation -
http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-
python/

Page 20 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/
http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/

 Designing Modules In Python - HashedIn Technologies

2. See retrying library on pip - https://pypi.python.org/pypi/retrying

Summary
1. The open/closed principle tells us not to modify our already

working code just to add new features. It’s okay to change code for
bug fixes, but other than that, we should look at functional / object
oriented practices to extend the existing code when we want to add
new functionality.

2. Exponential backoff strategy prevents overloading external
system by increasing the delay between re-attempts

3. Inheritance can be used to extend logic without modifying code
4. Decorators help you write code before and after a function without

actually modifying the function

Page 21 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Chapter 4: Integrating with a Second SMS
Gateway
Previously, we added a retry mechanism to send sms. With that change,
things are now stable in production.

Your finance team now wants a change. Watertel SMS gateway is proving
out too expensive. A competitor - Milio - is now offering the same service
at a better pricing.

Your product manager wants you to minimize the risk by routing only 20%
of the messages through Milio. If Milio proves stable after a few weeks of
usage, the product manager would slowly increase the traffic.

Of course, like last time round – we do not want to change existing code
that is already working. Also, we need to have the retry logic for Milio as
well. And finally, we do not want to duplicate any code.

Create an implementation for Milio
Milio’s interface for sending SMS is different than Watertel. It doesn’t have
a username/password, and no API to login.

Instead, Milio provides an access token and a registered phone number.
We need to add the access token as a HTTP request header. The
registered phone number must be sent in the POST body.

Our first step is to create a new class MilioSmsClient, with the same
interface as our original SmsClient. We have covered this before, so we will
just write the pseudo-code below.

sms.py : Adding stub interface for MilioSmsClient

This is the class we wrote earlier

We are not allowed to change this class

class SmsClient (object):
 def send_sms (self, phone_number, message):

...

Page 22 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

We wrote this class to handle retries

Again, we are not allowed to change this class

class SmsClientWithRetry (SmsClient):
 def send_sms (self, phone_number, message):

...

This is our new class to send sms using Milio's APi

class MilioSmsClient(object):
 def __init__ (self, url, registered_phone, access_token):

self .url = url
self.registered_phone = registered_phone

self .access_token = access_token

 def send_sms (self, phone_number, message):
Similar to send_sms method in SmsClient
Difference would be in the implementation
We will have different JSON response,
and different request parameters
print("Milio Client: Sending Message '%s' to Phone %s"

% (message , phone_number))

Client developers only care about sms_client object

When ready, we will change sms_client to use our new class

sms_client = SmsClientWithRetry(username , password)

The next step is to actually write the logic in send_sms method. We will
leave that as an exercise, as the logic is largely similar to what we did for
Watertel.

Implementing retries without code duplication
MilioSmsClient needs to support retries, just like we did for our Watertel
implementation. But we don’t want to duplicate the code we wrote earlier.
How can we achieve that?

There is a conflict situation:
1. Adding retries without code duplication would mean we have to

inherit SmsClientWithRetry.

Page 23 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

2. But SmsClientWithRetry assumes we need a url, username and
password as constructor arguments - and we don’t have that for
Milio. Hence, inheritance is cumbersome

This conflict is largely because we made a mistake in the earlier chapter -
we chose to build new logic using inheritance. Inheritance has tied us into
a rigid hierarchy. We need to break this hierarchy.
To get around this problem, we will refactor our code. This time round, we
will use Composition instead of Inheritance.

sms.py : Refactoring our code

We rename SmsClient to WatertelSmsClient

This makes the intent of the class clear

We don't change anything else in the class

class WatertelSmsClient (object):
 def send_sms (self, phone_number, message):

...

This is our new class to send sms using Milio's APi

class MilioSmsClient(object):
 def send_sms (self, phone_number, message):

...

class SmsClientWithRetry (object):
 def __init__ (self, sms_client):

self .delegate = sms_client

 def send_sms (self, phone_number, message):
Insert start of retry loop
self .delegate .send_sms (phone_number, message)
Insert end of retry loop

_watertel_client = SmsClient (url , username , password)

Here, we are pass watertel_client

But we could pass an object of MilioClient,

and that would still give us retry behaviour

sms_client = SmsClientWithRetry(_watertel_client)

Let’s go through the changes:

Page 24 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

1. Renaming SmsClient: We renamed SmsClient to
WatertelSmsClient. When we started, SmsClient was descriptive
enough. Now with two different backend systems, SmsClient is
confusing.

2. No Inheritance: SmsClientWithRetry gets a constructor argument
called sms_client. When it wants to send a sms, it delegates the job to
the sms_client that it got in the constructor

3. Constructing sms_client: Client developers only care about the
sms_client object that they import. So, we smartly reconfigure
sms_client in a way that provides the exact same functionality as
before.

With Inheritance, we reused functionality by calling super.

super(SmsClientWithRetry, self).send_sms (phone_number, message)

With Composition, we reuse functionality by delegating to an object that
was provided in the constructor.

self .delegate .send_sms (phone_number, message)

The advantage with Composition is that we can pass any object that has a
send_sms method defined. In other words, we can pass either
WatertelSmsClient or MilioSmsClient. That is powerful.

Splitting Traffic between Milio and Watertel
So far, we have a working implementation of MilioSmsClient, and we have
a way to retry sending SMS that works with both our implementations. But
how do we split the traffic between the two?

The actual logic to split traffic is simple. Generate a random number
between 1 and 100. If it is between 1 and 80, use WatertelSmsClient. If it
is between 81 and 100, use MilioSmsClient. Since the number is random,
over time we will get a 80/20 split between the implementations.

But, the big question is – where should we put this logic?

Page 25 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

As before, we don’t want client developers to implement this logic. Hell, we
don’t even want them to know we are using 2 different providers.
Additionally, we can’t add that logic to either WatertelSmsClient or
MilioSmsClient - those classes are already working, and we don’t want to
touch code that is already working well.

The only way out is one more indirection. We create an intermediate class
that is used by all client developers. This class will decide how to split
traffic between MilioSmsClient and WatertelSmsClient. Let’s call this
class SmsRouter.

sms.py : Adding a SmsRouter to split traffic

from random import randint

class WatertelSmsClient (object):
 ...

class MilioSmsClient(object):
 ...

class SmsClientWithRetry (object):
 ...

class SmsRouter:
 def __init__ (self, split_ratio, watertel , milio):

TODO: assert split_ratio is between 1 and 100
self .split_ratio = ratio
self .watertel = watertel
self .milio = milio

 def send_sms (self, phone_number, message):
number = randint (1, 100)
if number <= self.split_ratio:

self .watertel .send_sms (phone_number, message)
elif number <= 100:

self .milio.send_sms (phone_number, message)
else:

raise SmsException("Unreachable code path!")

_watertel = WatertelSmsClient (url , username , password)

Page 26 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

_milio = MilioSmsClient(url , registered_phone, access_token)
sms_client = SmsRouter (80, _watertel, _milio)

There are two things to note about this implementation -
1. SmsRouter has the exact same signature for the send_sms method.

This is important - otherwise client developers would have to change
their code.

2. SmsRouter doesn’t actually do the work of sending the sms. It only
decides who should send the sms, and then it simply delegates it to
the appropriate object.

There is one problem though with SmsRouter. It either delegates to milio
or watertel. But, the router shouldn’t care to whom it is delegating - it
could be a totally different implementation for all it cares.

We just need to rename our variables to be a bit more generic.

sms.py : Version 2 of SmsRouter without dependency on milio or watertel

from random import randint

class WatertelSmsClient (object):
 ...

class MilioSmsClient(object):
 ...

class SmsClientWithRetry (object):
 ...

class SmsRouter:
 def __init__ (self, split_ratio, first , second):

TODO: assert split_ratio is between 1 and 100
self .split_ratio = ratio
self . first = first
self . second = second

 def send_sms (self, phone_number, message):
number = randint (1, 100)
if number <= self.split_ratio:

Page 27 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

self .first .send_sms (phone_number, message)
elif number <= 100:

self .second .send_sms (phone_number, message)
else:

raise SmsException("Unreachable code path!")

_watertel = WatertelSmsClient (url , username , password)
_milio = MilioSmsClient(url , registered_phone, access_token)
sms_client = SmsRouter (80, _watertel, _milio)

Now we can pass any two implementations we want, and SmsRouter will
split the traffic appropriately between the two.

Tip You can go a step further and modify SmsRouter to accept any
number of implementations instead of exactly two.

But, you should practice YAGNI - you ain’t gonna need it. There is
no point generalizing beyond your current needs.

YAGNI is a conscious effort. In the first version, even I wrote the
more general version. It’s easy to fall into the trap of generalizing
more than necessary - always be on the watch out.

I have left the general version below, but remember - YAGNI.

Combining Retries and SmsRouter
We have one last thing to do - combine SmsClientWithRetry and and
SmsRouter. This is now easy to do - it’s just a matter of constructing
objects in the right order.

sms.py : Combining retries and split traffic

from random import randint

class WatertelSmsClient (object):
 ...

Page 28 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

class MilioSmsClient(object):
 ...

class SmsClientWithRetry (object):
 ...

class SmsRouter:
 ...

First, create implementation specific objects

_watertel = WatertelSmsClient (url , username , password)
_milio = MilioSmsClient(url , registered_phone, access_token)

Then, create the router to split traffic

_router = SmsRouter (80, _watertel, _milio)

Finally, wrap the router to allow for retries

This final object will be used by client developers

sms_client = SmsClientWithRetry(_router)

One nice thing about this is how retries now work. If one provider fails,
retry may end up sending the sms using another provider. In other words,
retries are across providers - you don’t keep retrying with the same
provider.

Summary
1. Prefer Composition over Inheritance - Composition provides a

better way to reuse code
2. Don’t be afraid to refactor - You can’t get the design right the first

time. Refactor when necessary.
3. YAGNI - Don’t over generalize code. Solve your specific problem, you

can always refactor later if necessary.

Page 29 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Appendix A: Watertel Integration Guide
Once you buy a plan from Watertel, you will be provided with UserName
and Password. There are two APIs that you will need to call - login and
send sms.

Login API
Before you send an SMS, you need to login and get an access token. The
access token is valid for a few hours, and you don’t have to login again as
long as the access token is valid.

Make a POST request to https://watertel.com/api/login.
Content type must be application/json.

Request Body

{

 "username" : "testuser",
 "password" : "password"
}

Response Body

{

 "accessToken": "jdsji423kjkjskufiajk32j324",
 "expiresIn" : 7200
}

Send SMS API
To send an SMS, make a POST request to
https://watertel.com/api/sms?accessToken=<>

Request Body

{

 "message" : "Your order was successful",
 "phone" : "9986650980",
 "priority': 1
}

Page 30 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Response
Status Code

Meaning

200 SMS delivered successfully

400 Invalid arguments. Either wrong phone number, or the
text was longer than 140 characters

401 Invalid access token

500 Problem with watertel gateway. SMS was not delivered.
Application can retry the request.

Page 31 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

 Designing Modules In Python - HashedIn Technologies

Appendix B: Milio Integration Guide
Once you create an account with Milio, you will be given the following -

1. Access token
2. Registered phone number

Any Sms you send will appear as though it came from your registered
phone number.

To send a SMS, send a POST request to
https://milio-sms-gateway.com/api/sms?accessToken=<>

Request Body

{
 “text”: “Hello, SMS!”,
 “recipientPhone”: “9986650980”,
 “registeredPhone”: “9342414106”

}

Response
Status Code

Meaning

201 SMS delivered successfully

400 Invalid arguments. Either wrong phone number, or the
text was longer than 140 characters

401 Invalid access token

429 Indicates you are trying to send too many messages
and have been rate limited.

500 Indicates an internal error, you can retry

Page 32 of 32 2010-2018 | © HashedIn Technologies Pvt. Ltd.

